Relating to the Building Industry
From a building point of view, the sheets of material which make up the ball's outer skin might equate to prefabricated building panels and some key difficulties remain in creating double curved panels which are:
- Achieving the optimal size of the panels or components within the restrictions of manufacturing, logistical and site handling constraints,
- Details of the junctions between panels including accuracy of fit and position, especially where multiple panels meet at corners, or where junctions are required to meet accurately along complexed curved edges,
- Sheets can often curve in one direction but curves in two directions without the special preparation or a mould is often difficult,
- Being able to achieve the desired design with a controlled set of geometries. Creating multiple double curve moulds adds significant cost to a project.
Curved building materials and issues of logistics, accuracy of fit, weather tightness and prefabrication |
Football Ball Design
The evolution of the design of the football has addressed some of these issues and offers parallels. Looking at how the product has been optimised over time suggests a few tricks which might work for the structural envelopes of buildings. For example:
c.1937 Football design |
- 18 panels,
- 32 three-panel junctions,
- 48 linear seams
1963 Adidas Santiago World Cup Ball |
1963 Santiago Ball consists of:
- 18 panels, of which 6 are octagons and 12 are symmetrical polygons,
- 40 three-panel junctions,
- 58 linear seams
1970 Adidas Telstar World Cup Ball |
1970 Adidas Telstar Ball consists of:
- 32 panels, 20 of which are hexagons and 12 are pentagons,
- 58 three-panel junctions
- 90 equal linear straight seams
2006 Adidas Teamgeist World Cup ball |
2006 Adidas Teamgeist World Cup ball consists of:
- 18 panels of two types (6 of one and 8 of the second),
- 20 three-panel junctions,
- 36 seams, of which 24 are curved and 12 are straight.
The Telstar design has probably become the most common football ball design and has experienced a long design life, but more contemporary designs have investigated how the ball and its performance can be optimised with fewer components and junctions. The Teamgeist ball demonstrates this. It also returns to a three-axis geometrical arrangement.
- 8 panels of two types (4 of each type).
- 12 three-panel junctions,
- 18 linear seams of which 12 are long and curved, 6 are short and straight.
2013 Nike Ordem Premiership Ball |
- 12 equal panels, each fabricated in to six sections which adapt to take on a double curved shape,
- 20 three-panel junctions,
- 30 straight linear seams.
2014 Adidas Brazuca World Cup Ball |
- 6 equal cruciform panels,
- 8 three-panel junctions
- 12 curved linear seams
It doesn't always look the same when it comes through the post. Junction alignment of panels around a double curve geometry. |
A Load of Old Balls
A Load of Old Balls Simon Inglis |
Simon Inglis's book A Load of Old Balls (2005) examines the development of the ball in British sports up to the twenty-first century and reveals much relevant information in relation to the development of materials, manufacturing processes, geometrical development and performance reliability.
On materials, it charts the greatest advances with the development of synthetic and composite materials to replace natural materials and animal parts. It describes how material technologies from different industrial sectors were investigated to meet the requirements of the developing sports industries. Mass production and standardisation allowed developments in ball design to progress with greater accuracy of manufacture and performance precision. Even the 'crack' of the golf ball when hit by the driver is explained as a carefully engineered acoustic property.
Other Designs and Experiments
Haresh Lalvani's soccer ball |
More recently Haresh Lalvani, Professor of Architecture at the Pratt Institute, has been experimenting with tessellating polygons which combine to create three dimensional spheres or ellipsoids. His work is available to see at the Patents site.
Using intersecting cylinders set out around the axis of different platonic solids (cube 3-cylinders, tetrahedron 4-cylinders and dodecahedron 6-cylinders) allows surfaces to come close to double curve geometries, using single curve planes.
The cockpit roof lights for the Central Module at Halley VI designed with the idea of intersecting cylinders as an economy over double-curved glass |
Examples in Buildings
Examples of double curved geometries in building materials are mostly seen with timber, concrete, glass, perspex, metal and FRP:
Achieving double curved geometries with building materials |